Capacitive Power Factor Correction |
![]() |
Written by Administrator |
Saturday, 07 June 2008 19:14 |
Power Factor Correction.Capacitive Power Factor correction (Power Factor Compensation) is applied to circuits which include induction motors as a means of reducing the inductive component of the current and thereby reduce the losses in the supply. There should be no effect on the operation of the motor itself. In the interest of reducing the losses in the distribution system, power factor correction is added to neutralize a portion of the magnetizing current of the motor. Typically, the corrected power factor will be 0.92 - 0.95 Some power retailers offer incentives for operating with a power factor of better than 0.9, while others penalize consumers with a poor power factor. There are many ways that this is metered, but the net result is that in order to reduce wasted energy in the distribution system, the consumer will be encouraged to apply power factor correction. Power factor correction is achieved by the addition of capacitors in parallel with the connected motor circuits and can be applied at the starter, or applied at the switchboard or distribution panel. The resulting capacitive current is leading current and is used to cancel the lagging inductive current flowing from the supply. Capacitors connected at each starter and controlled by each starter is known as "Static Power Factor Correction" while capacitors connected at a distribution board and controlled independently from the individual starters is known as "Bulk Power Factor Correction".
Capacitor selection.Static Power factor correction must neutralize no more than 80% of the magnetizing current of the motor. If the correction is too high, there is a high probability of over correction which can result in equipment failure with severe damage to the motor and capacitors. Unfortunately, the magnetizing current of induction motors varies considerably between different motor designs. The magnetizing current is almost always higher than 20% of the rated full load current of the motor, but can be as high as 60% of the rated current of the motor. Most power factor correction is too light due to the selection based on tables which have been published by a number of sources. These tables assume the lowest magnetizing current and quote capacitors for this current. In practice, this can mean that the correction is often less than half the value that it should be, and the consumer is unnecessarily penalized. Supply Harmonics.Harmonics on the supply cause a higher current to flow in the capacitors. This is because the impedance of the capacitors goes down as the frequency goes up. This increase in current flow through the capacitor will result in additional heating of the capacitor and reduce it's life. The harmonics are caused by many non linear loads, the most common in the industrial market today, are the variable speed controllers and switchmode power supplies. Harmonic voltages can be reduced by the use of a harmonic compensator, which is essentially a large inverter that cancells out the harmonics. This is an expensive option. Passive harmonic filters comprising resistors, inductors and capacitors can also be used to reduce harmonic voltages. This is also an expensive exersize. Detuning Reactors.Detuning reactors are connected in series with power factor correction capacitors to reduce harmonic currents and to ensure that the series resonant frequency does not occur at a harmonic of the supply frequency. Supply Resonance.Capacitive Power factor correction connected to a supply causes resonance between the supply and the capacitors. If the fault current of the supply is very high, the effect of the resonance will be minimal, however in a rural installation where the supply is very inductive and can be a high impedance, the resonances can be very severe resulting in major damage to plant and equipment. Voltage surges and transients of several times the supply voltage are not uncommon in rural areas with weak supplies, especially when the load on the supply is low. As with any resonant system, a transient or sudden change in current will result in the resonant circuit ringing, generating a high voltage. The magnitude of the voltage is dependant on the 'Q' of the circuit which in turn is a function of the circuit loading. One of the problems with supply resonance is that the 'reaction' is often well removed from the 'stimulus' unlike a pure voltage drop problem due to an overloaded supply. This makes fault finding very difficult and often damaging surges and transients on the supply are treated as 'just one of those things'. Power Factor correction is not applied to circuits that draw either discontinuous or distorted current waveforms.Most electronic equipment includes a means of creating a DC supply. This involves rectifying the AC voltage, causing harmonic currents. In some cases, these harmonic currents are insignificant relative to the total load current drawn, but in many installations, a large proportion of the current drawn is rich in harmonics. If the total harmonic current is large enough, there will be a resultant distortion of the supply waveform which can interfere with the correct operation of other equipment. The addition of harmonic currents results in increased losses in the supply. This results in distortion powerfactorPower factor correction for distorted supplies can not be achieved by the addition of capacitors. The harmonics can be reduced by designing the equipment using active rectifiers, by the addition of passive filters (LCR) or by the addition of electronic power factor correction inverters which restore the waveform back to its undistorted state. This is a specialist area requiring either major design changes, or specialized equipment to be used. Power Factor Introduction |
Last Updated ( Wednesday, 06 April 2011 22:48 ) |